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SUMMARY

The hazard function is the probability of an event per unit of time for ever smaller time
intervals. It has applications to a number of industries including drug development, engi-
neering, finance, insurance and commerce to name a few. We focus on clinical trials, but
more specifically, within the therapeutic area of oncology. Here, the hazard function is an
important measure that can quantify the changes to the risk of mortality or cancer over time.
It is a common and important tool for clinical trial practitioners. In this paper, we develop
new non-parametric procedures for testing cumulative hazard functions. From the asymp-
totic properties of the Kaplan-Meier estimators, we propose procedures that construct test
statistics for different tests of hypotheses, including testing if a cumulative hazard function
follows a partially known-form hazard, and testing the proportional hazards assumption
between two independent samples. Our testing approaches are very flexible since they al-
low us to choose the testing period and to specify any partially known-form distribution.
In addition, the approximate asymptotic distributions of the test statistics are derived under
both the null hypothesis and the alternative hypothesis, respectively. Extensive simulation
studies show that the proposed procedures enjoy a reasonable Type-I error control and good
statistical power under different censoring scenarios. The proposed methodology is further
applied to examine the gender-specific mortality hazard rates for young adults with acute
myeloid leukemia using the SEER database.
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1 Introduction

The hazard function is important to survival analysis because it describes the chance of an event
of interest (for example, death or the recurrence of disease) in the next instant in time. Testing a
hazard function with a known-form hazard is primarily achieved by testing the observed data via a
corresponding distribution. For instance, to test a constant hazard, the exponentiality test is com-
monly used in practice. Existing statistical methodologies to test exponentiality for time-to-event
data are mostly goodness-of-fit tests considering censored data. One of the most commonly used
tests was proposed by Hollander and Proschan (1979) to compare the empirical distribution with a
completely specified distribution. Hollander and Pena (1992) and Li and Doss (1993) proposed the
Pearson-type Chi-square goodness-of-fit test. In recent literature, Han et al. (2017) used a piecewise
exponential approach to identify violations to exponentiality with a better control of Type-I error
under various censoring mechanisms. Smuts et al. (2019) proposed tests for exponentiality based on
a conditional second-moment characterization approach.

The comparison of two hazard functions, the hazard ratio (HR), is a common measure in survival
analysis. However, the HR between two samples only makes sense if the two hazard functions are
proportional to each other. In addition, the proportional hazards (PH) assumption is important to
the famous Cox’s regression model (Cox, 1972). Therefore, the PH test is widely discussed in the
literature. Existing methods include Wei (1984), Gill and Schumacher (1987), Dabrowska et al.
(1989), Grambsch and Therneau (1994), Deshpande and Sengupta (1995), Sahoo and Sengupta
(2016), and Xue et al. (2020), etc. Besides, a hypothesis test for an increasing hazard ratio is
developed by Sahoo and Sengupta (2017).

In oncology studies, the progression of disease from diagnosis is not consistent, therefore, a
constant hazard function over time is not always expected. However, there’s interest on testing
whether the hazard function follows a particular form within a certain period. For instance, as illus-
trated in Figure 1, the data generated from a piecewise exponential distribution with change-points
at t = 2 and t = 20 have a constant hazard function during t ∈ [2, 20]. However, the aforementioned
goodness-of-fit tests cannot be applied to test the constant hazard function between t = 2 and t = 20.
Similarly, clinicians may also be interested in knowing whether the PH assumption holds within a
certain period, rather than the full spectrum of time. For instance, some immunotherapies have been
shown to have delayed clinical effects as compared to cytotoxic chemotherapy (Small et al., 2006;
Hodi et al., 2010; Chen, 2013). Therefore, the hazards between the treatment and control groups are
non-proportional, however the PH assumption may still hold after the delayed period, allowing for
an evaluation of the clinical benefit by the HR. To the best of our knowledge, few methodologies
in the literature address testing hazard functions within a prespecified period. To address this chal-
lenge, we propose flexible non-parametric procedures and develop the corresponding test statistics
for testing (i) a partially specified known-form hazard, and (ii) the proportional hazards assumption
on a prespecified period.

In this paper, we propose the flexible non-parametric procedures for testing hazard functions
based on the asymptotic properties of the Kaplan-Meier (KM) estimator (Kaplan and Meier, 1958).
We introduce a test statistic to evaluate whether a particular hazard function follows a known-form
hazard on a selected period, this test statistic is a formulation of the KM estimators at the prespecified
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knots of the testing period. An F approximation is applied to correct the Type-I inflation problem.
The proposed approach is very flexible in practice since the form of the hazard function is only
needed to be partially specified, and it is not restricted to exponentiality, it can be specified as the
forms from other distributions. We then extend the testing procedure to a two-sample proportional
hazards testing problem under a prespecified testing period. Extensive simulation studies show that
the proposed methods enjoy a reasonable Type-I error control and good power in both the one-
sample and two-sample testing problems. The proposed methodology is further applied to examine
the gender-specific mortality hazards for young adults with acute myeloid leukemia (AML) using
the Surveillance, Epidemiology, and End Results (SEER) registry system.
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Figure 1: Testing constant hazard in a selected period of time.

The rest of the paper is organized as follows. Section 2 introduces the proposed non-parametric
testing procedures for both the one-sample and two-sample problems, including the testing pro-
cedures and the distributions of the test statistics under both the null and alternative hypotheses.
Section 3 presents simulation studies to examine the empirical performance of the proposed testing
procedures on the Type-I error rate control and statistical power. In Section 4, we apply the pro-
posed methodology to the AML data in young adults from the SEER database. The last chapter is a
discussion on the proposed methods, it is provided in Section 5.
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2 Proposed Method

2.1 One-sample problem: testing a known-form hazard

2.1.1 Hypothesis specification

Suppose there are n independent subjects in a time-to-event dataset. Our main goal is to test whether
the hazard function of the sample follows a partially known form within a prespecified period, such
that h(t) = λh0(t) when t ∈ [tl, tu], where λ is an unknown parameter, and tl and tu are the lower
and upper bounds of the testing period. The form of h0(t) is determined by the testing problem, for
instance, h0(t) = 1 for testing a constant hazard. Then, the hypothesis is equivalently written as for
t ∈ [tl, tu],

H0 : H(t) = λH0(t)− λH0(tl) +H(tl) versus

HA : H(t) ̸= λH0(t)− λH0(tl) +H(tl),
(2.1)

where H(t) =
∫ t

0
h(u)du denote the cumulative hazard function of the sample and H0(t) =∫ t

0
h0(u)du is the partially known cumulative hazard form. The null hypothesis assumes that the

cumulative hazard function follows a specific form λH0(t) − λH0(tl) +H(tl) between tl and tu.
If tl = 0 and tu = ∞, the hypothesis (2.1) reduces to

H0 : H(t) = λH0(t) versus HA : H(t) ̸= λH0(t). (2.2)

The hypotheses (2.1) and (2.2) allow for a flexible choice of the cumulative hazard function in the
null hypothesis by specifying any H0(t). For instance, we can choose H0(t) = t to test a constant
hazard, or H0(t) = tα to test if H(t) has the same form as a Weibull distribution with a known
shape parameter α.

In pursuit of testing the hypothesis (2.1), we start with a partition of the domain of t ∈ [tl, tu],
where the prespecified knots are denoted as tl = t0 < t1 < t2 < . . . , tk−1 < tk = tu. The survival
rates of the knots are denoted as θ = (St0 , St1 , St2 , . . . , Stk)

T . Consider a function of θ, given by

g(θ) =

(
∆H(t1)

∆H0(t1)
,
∆H(t2)

∆H0(t2)
, . . . ,

∆H(tk)

∆H0(tk)

)T

, (2.3)

where ∆H(ti) = H(ti)−H(ti−1) = − logSti−(− logSti−1), and ∆H0(ti) = H0(ti)−H0(ti−1)

for i = 1, 2, . . . , k. With respect to each element in g(θ), the numerator is the difference of the true
cumulative hazards (H(t)’s) between two adjacent knots, while the denominator is the difference of
the H0(t)’s specified in the null hypothesis between two adjacent knots. Under the null hypothesis
(2.1), all the elements of g(θ) are consistent to the unknown parameter λ. Thus, we re-specify the
hypothesis as

H0 : cg(θ) = 0 versus HA : cg(θ) ̸= 0, (2.4)
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where c is a (k − 1)× k contrast matrix given by

c =



1 −1

1 0 −1

1 −1

0 . . .
...

1 −1


. (2.5)

If the null hypothesis in (2.1) is false, we should reject the null hypothesis in (2.4) as well.

2.1.2 Testing procedures

We construct the testing statistic based on the KM estimator and its asymptotic properties which are
broadly discussed in Breslow and Crowley (1974), Wang et al. (1986), and Tsai et al. (1987).

Theorem 1. Let θ̂ = (Ŝt0 , Ŝt1 , Ŝt2 , . . . , Ŝtk)
T denote the Kaplan-Meier estimators of θ. Under the

null hypothesis (2.4), we have

T1 = n(cg(θ̂))T (c∇g(θ̂)TΣ∇g(θ̂)cT )−1cg(θ̂)
D−→ χ2

k−1 (2.6)

as n → ∞, where Σ is a (k + 1) × (k + 1) covariance matrix and ∇g(θ̂) denotes the gradient of
g(θ̂) with respect to θ̂.

Proof. Following Breslow and Crowley (1974), the asymptotic properties of the KM estimators
imply that

√
n(Ŝ(t)− S(t)) converges in distribution to a Gaussian process with expectation 0 and

a covariance function. Thus, the vector of the KM estimators, θ̂, follows an asymptotic multivariate
normal distribution such that

√
n(θ̂ − θ)

D−→ N(0,Σ) as n → ∞. (2.7)

The asymptotic distribution of g(θ̂) can be obtained by the Delta method (Casella and Berger, 2001)
as √

n
(
g(θ̂)− g(θ)

) D−→ N
(
0,∇g(θ̂)TΣ∇g(θ̂)

)
as n → ∞. (2.8)

The gradient of g(θ̂) with respect to θ̂ is a (k + 1)× k matrix given by

∇g(θ̂) =



1
∆H0(t1)Ŝt0

0 0 0 . . . 0 0

−1
∆H0(t1)Ŝt1

1
∆H0(t2)Ŝt1

0 0 . . . 0 0

0 −1
∆H0(t2)Ŝt2

1
∆H0(t3)Ŝt2

0 . . . 0 0

...
...

...
...

...
...

...
...

...
...

...
... −1

∆H0(tk−1)Ŝtk−1

1
∆H0(tk)Ŝtk−1

0 0 0 0 . . . 0 1
∆H0(tk)Ŝtk


.
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Thus, under the null hypothesis (2.4) and cg(θ) = 0, (2.6) directly follows from (2.8).

We then substitute the covariance matrix Σ by its estimator Σ̂ to obtain an approximation of the
test statistic T1 under the null hypothesis, which is given by

T ∗
1 = n(cg(θ̂))T (c∇g(θ̂)T Σ̂∇g(θ̂)cT )−1cg(θ̂)

approx∼ χ2
k−1. (2.9)

In practice, the elements in the estimated covariance matrix Σ̂ can be obtained by the Greenwood
formula (Breslow and Crowley, 1974; Wang et al., 1986), denoted as Σ̂ = nΣ̃. The diagonal
elements in Σ̃ are given by the Greenwood formula such that V̂ar[Ŝti ] = Ŝ2

ti

∑
t(h)≤ti

dh

nh(nh−dh)
,

where dh and nh denote the number of death and the number of patients at risk at t(h), respectively.

The off-diagonal elements in Σ̃ are obtained by Ĉov(Ŝtj , Ŝti) =
Ŝti

Ŝtj

V̂ar(Ŝtj ), where tj < ti and

i, j = 0, 1, 2, . . . , k.

Remark 1. According to Mushfiqur Rashid et al. (2000), the Chi-square critical value, derived from
the asymptotic theory, allows too many rejections under the null hypothesis and inflates the signif-
icance level. Thus, to circumvent this problem, we consider an alternative testing statistic given
by

T ∗
2 =

T ∗
1

n
× n− k + 2

k − 1

approx∼ Fk−1,n−k+2 (2.10)

under the null hypothesis. The proof of (2.10) directly follows with the result from Muirhead (1982).
We recommend to use T ∗

2 in practice as we find that the F correction does correct the alpha inflation
problem in our numerical studies.

Remark 2. When t0 = 0 or there are no events between 0 and t0, the estimate of Ŝt0 is fixed because
Ŝt0 = 1 and −log(Ŝt0) = 0, which make θ and θ̂ have one fewer element. The k × k matrix of the
gradient of g(θ̂) with respect to θ̂ = (Ŝt1 , Ŝt2 , . . . , Ŝtk)

T is given by

∇g(θ̂) =



−1
∆H0(t1)Ŝt1

1
∆H0(t2)Ŝt1

0 0 . . . 0 0

0 −1
∆H0(t2)Ŝt2

1
∆H0(t3)Ŝt2

0 . . . 0 0

...
...

...
...

...
...

...
...

...
...

...
... −1

∆H0(tk−1)Ŝtk−1

1
∆H0(tk)Ŝtk−1

0 0 0 0 . . . 0 1
∆H0(tk)Ŝtk


.

Remark 3. If there are no events in [ti−1, ti) where i > 1, the inverse of the covariance matrix
might have a singularity problem. To correct this problem, we drop the knot at ti−1 and combine
[ti−1, ti) with [ti−2, ti−1). Before conducting the hypothesis test, we repeat this procedure until all
the intervals have at least one event.
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2.1.3 Power of the test

The distribution of the test statistic under a given alternative hypothesis can be derived in a similar
procedure. Suppose that the hazard function under the alternative hypothesis is a known distribution,
that is,

HA : cg(θ) = µ, (2.11)

where µ is a known vector. Given the fixed knots t0, t1, t2, . . . , tk, the distribution of the test statistic
under the alternative hypothesis is given as follows.

Corollary 2.1. Given cg(θ) = µ, the distribution of T ∗
1 is an approximated non-central Chi-square

distribution given by

T ∗
1 = n(cg(θ̂))T (c∇g(θ̂)T Σ̂∇g(θ̂)cT )−1cg(θ̂)

approx∼ χ2
k−1,ν , (2.12)

where ν = n
2µ

T (c∇g(θ̂)T Σ̂∇g(θ̂)cT )−1µ is the noncentrality parameter.

Similar to (2.10), the distribution of T ∗
2 under the alternative hypothesis follows an approximated

non-central F distribution with degree of freedom k− 1 and n− k+2, and a non-central parameter
ν. Therefore, given Σ̂, g(θ̂), and ∇g(θ̂) estimated from the pilot studies, the power of the test can
be calculated by 1 − P (F ∗

k−1,n−k+2,1−α), where P is the cumulative distribution function of the
aforementioned non-central F distribution, and F ∗

k−1,n−k+2,1−α denotes the F critical value at a
1− α confidence level under the null hypothesis.

2.2 Two-sample problem: testing proportional hazards

2.2.1 Hypothesis specification

Suppose that there are n1 and n2 independent subjects in the two independent groups, respectively.
In order to test if the hazard functions of the two groups are proportional to each other in a prespec-
ified testing period [tl, tu], the null hypothesis is specified as for t ∈ [tl, tu],

H0 :
H1(t)−H1(tl)

H2(t)−H2(tl)
= λ versus HA :

H1(t)−H1(tl)

H2(t)−H2(tl)
̸= λ, (2.13)

where tl and tu are the lower and upper bounds of the testing period, H1(t) and H2(t) denote the
cumulative hazard functions of group 1 and group 2, respectively, and λ is the constant unknown
hazard ratio between these two independent samples. When tl = 0 and tu = ∞, the hypothesis
(2.13) reduces to

H0 :
H1(t)

H2(t)
= λ versus HA :

H1(t)

H2(t)
̸= λ. (2.14)

Similar to the testing procedure for the one-sample problem, a partition of the testing period is
prespecified with k + 1 knots distributed on the domain of t, denoted as tl = t0 < t1 < t2 <

. . . , tk−1 < tk = tu. The survival rates at the knots in the two groups are denoted by θ1 =
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(S1t0 , S1t1 , S1t2 , . . . , S1tk)
T and θ2 = (S2t0 , S2t1 , S2t2 , . . . , S2tk)

T , respectively, and θT = (θT
1 ,θ

T
2 ).

Consider a function of θ, given by

g(θ) =

(
∆H1(t1)

∆H(t1)
,
∆H1(t2)

∆H(t2)
, . . . ,

∆H1(tk)

∆H(tk)

)T

, (2.15)

where ∆H(ti) = ∆H1(ti) + ∆H2(ti), and ∆H1(ti) = H1(ti) − H1(ti−1) = − logS1ti −
(− logS1ti−1

) and ∆H2(ti) = H2(ti) − H2(ti−1) = − logS2ti − (− logS2ti−1
) are the differ-

ences of the cumulative hazard functions between the two adjacent knots in group 1 and group 2,
respectively. If the proportional hazards assumption holds, then all of elements g(θ) will be con-
sistent to λ/(1 + λ). Thus, in similar fashion to the one-sample problem, we test the following
hypothesis

H0 : cg(θ) = 0 versus HA : cg(θ) ̸= 0, (2.16)

where c is a (k − 1)× k contrast matrix given in (2.5).

2.2.2 Testing procedures

Theorem 2. Let θ̂ = (Ŝ1t0 , Ŝ1t1 , Ŝ1t2 , . . . , Ŝ1tk , Ŝ2t0 , Ŝ2,t1 , Ŝ2,t2 , . . . , Ŝ2,tk)
T denote the Kaplan-

Meier estimators of θ, N = n1n2

n1+n2
, n1

n1+n2
→ m1 and n2

n1+n2
→ m2 as n1 → ∞ and n2 → ∞.

Assume that
0 < m1 < 1 and 0 < m2 < 1. (2.17)

Then, under the null hypothesis (2.16), we have

T3 = N(cg(θ̂))T (c∇g(θ̂)TΣ∇g(θ̂)cT )−1cg(θ̂)
D−→ χ2

k−1 (2.18)

as n1 → ∞ and n2 → ∞. ∇g(θ̂) denotes the gradient of g(θ̂) with respect to θ̂ and Σ is a
(2k + 2)× (2k + 2) covariance matrix given by

Σ =

 m2Σ1 0k+1

0k+1 m1Σ2

 , (2.19)

where Σ1 and Σ2 are the asymptotic covariance matrix of
√
n1(θ̂1 − θ1) and

√
n2(θ̂2 − θ2),

respectively, and 0k+1 is a (k + 1)× (k + 1) zero matrix.

Proof. Following the asymptotic properties of the KM estimators (2.7), we have

√
n1(θ̂1 − θ1)

D−→ N(0,Σ1) as n1 → ∞,
√
n2(θ̂2 − θ2)

D−→ N(0,Σ2) as n2 → ∞.

With the assumption (2.17), we have

√
N(θ̂ − θ)

D−→ N(0,Σ), (2.20)
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where Σ is given in (2.19). By applying the Delta method, the asymptotic distribution of g(θ̂) is
written as

√
N(g(θ̂)− g(θ))

D−→ N(0,∇g(θ̂)TΣ∇g(θ̂)) as n1 → ∞ and n2 → ∞, (2.21)

where ∇g(θ̂) is the gradient of g(θ̂) with respect to θ̂ with dimension (2k + 2)× k, which is given
by

∇g(θ̂) =



∆H2(t1)

Ŝ1t0
∆H(t1)2

0 0 0 . . . 0 0

−∆H2(t1)

Ŝ1t1
∆H(t1)2

∆H2(t2)

Ŝ1t1
∆H(t2)2

0 0 . . . 0 0

0 −∆H2(t2)

Ŝ1t2
∆H(t2)2

∆H2(t3)

Ŝ1t2
∆H(t3)2

0 . . . 0 0

...
...

...
...

...
...

...
...

...
...

...
... −∆H2(tk−1)

Ŝ1tk−1
∆H(tk−1)

2

∆H2(tk)

Ŝ1tk−1
∆H(tk)

2

0 0 0 0 . . . 0 −∆H2(tk)

Ŝ1tk
∆H(tk)

2

−∆H1(t1)

Ŝ2t0
∆H(t1)2

0 0 0 . . . 0 0

∆H1(t1)

Ŝ2t1
∆H(t1)2

−∆H1(t2)

Ŝ2t1
∆H(t2)2

0 0 . . . 0 0

0 ∆H1(t2)

Ŝ2t2
∆H(t2)2

−∆H1(t3)

Ŝ2t2
∆H(t3)2

0 . . . 0 0

...
...

...
...

...
...

...
...

...
...

...
... ∆H1(tk−1)

Ŝ2tk−1
∆H(tk−1)

2

−∆H1(tk)

Ŝ2tk−1
∆H(tk)

2

0 0 0 0 . . . 0 ∆H1(tk)

Ŝ2tk
∆H(tk)

2



.

Then, under the null hypothesis cg(θ) = 0, the asymptotic chi-square distribution of T3 directly
follows with (2.21) under the null hypothesis cg(θ) = 0.

Theorem 3. The test statistic T3 is invariant if H1(t) and H2(t) in (2.13) are switched.

Proof. In the test statistic T3, it is obvious to see ∇g(θ̂)TΣ∇g(θ̂) is invariant if we switch H1(t)

and H2(t) in (2.13). In addition, let

g1(θ) =

(
∆H1(t1)

∆H(t1)
,
∆H1(t2)

∆H(t2)
, . . . ,

∆H1(tk)

∆H(tk)

)T

,

g2(θ) =

(
∆H2(t1)

∆H(t1)
,
∆H2(t2)

∆H(t2)
, . . . ,

∆H2(tk)

∆H(tk)

)T

,

and let 1k denote a k × 1 vector with all elements equal to 1. Then, we have

g1(θ) = 1k − g2(θ)

cg1(θ) = c1k − cg2(θ) = −cg2(θ).
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Therefore, T3 = N(cg(θ̂))T (c∇g(θ̂)TΣ∇g(θ̂)cT )−1cg(θ̂) is invariant if H1(t) and H2(t) in
(2.13) are switched.

By replacing Σ1 and Σ2 with their estimates Σ̂1 and Σ̂2, we approximate the test statistic T3 by
T ∗
3 and we obtain

T ∗
3 = N(cg(θ̂))T (c∇g(θ̂)T Σ̂∇g(θ̂)cT )−1cg(θ̂)

approx∼ χ2
k−1 (2.22)

under the null hypothesis. In practice, Σ̂1 and Σ̂2 can be derived from the Greenwood formula. Like
the one-sample problem, we adopt an F approximation to correct the Type-I error inflation that’s
present when testing is based on the asymptotic Chi-square distribution. Let N∗ = [N ] denote the
integer part of N , the test statistic based on an approximated F distribution under the null hypothesis
is given by

T ∗
4 =

T ∗
3

N∗ × N∗ − k + 2

k − 1

approx∼ Fk−1,N∗−k+2. (2.23)

Remark 4. The gradient matrix ∇g(θ̂) needs to be adjusted when t0 = 0 since the KM estimates
of Ŝ1t0 and Ŝ2t0 are fixed to be 0. The 2k × k matrix of the gradient of g(θ̂) with respect to
θ̂ = (Ŝ1t1 , Ŝ1t2 , . . . , Ŝ1tk , Ŝ2,t1 , Ŝ2,t2 , . . . , Ŝ2,tk)

T is given by

∇g(θ̂) =
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Ŝ1t1
∆H(t2)2

0 0 . . . 0 0

0 −∆H2(t2)
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.

Remark 5. If there are no events in either of the groups in [ti−1, ti), the inverse of Σ̂ may be singular.
To correct this problem, we drop the knot at ti−1 and combine [ti−1, ti) with [ti−2, ti−1). Before
conducting the hypothesis test, we repeat this procedure until all the intervals have at least one event
in each group.

The distribution of the test statistic under a given alternative hypothesis can be derived like
the one-sample test we discussed earlier. The distribution of T ∗

4 under the alternative hypothesis
(2.11) is an approximated non-central F distribution with degrees of freedom k − 1 and n− k + 2
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and a noncentrality parameter ν = N∗

2 µT (c∇g(θ̂)T Σ̂∇g(θ̂)cT )−1µ. Therefore, the power of the
hypothesis test (2.23) is given by 1−P (F ∗

k−1,N∗−k+2,1−α), where P is the cumulative distribution
function of the non-central F distribution with noncentrality parameter ν, and F ∗

k−1,N∗−k+2,1−α

denotes the F critical value at a 1− α confidence level under the null hypothesis.

3 Simulation Studies

3.1 Simulation study 1: testing a partially known-form hazard

To implement the proposed procedure for testing a partially known-form hazard function, we need
to prespecify the following parameters: the known part of the cumulative hazard H0(t), the testing
period [tl, tu], the number of knots k, and the partition of the testing period. The testing period and
H0(t) are determined by the hypothesis testing problem, while k and t1, . . . , tk−1 can be specified
in different ways. In this simulation study, we investigate the empirical performance of the proposed
test under different approaches to determine k and t1, . . . , tk−1.

3.1.1 Type-I error simulation

Let α and γ denote the shape and scale parameter of a Weibull distribution, respectively. We gener-
ate data from three different distributions: an exponential distribution (constant hazard), a Weibull
distribution with α > 1 (increasing hazard), and a Weibull distribution with α < 1 (decreasing
hazard). The specifications of these parameters in these three scenarios are given in Table 1. The
sample sizes (n) are 100, 200, 300, 500, and 1,000. To evaluate the performance of the proposed
test under different censoring cases, we simulate data with no censoring, 20% random censoring,
and 40% random censoring. For each of these three censoring cases, 50,000 random samples are
generated, and then the proposed test is performed for each of the random samples at the Type-I
error rate of 0.05. The empirical Type-I error rate is computed by the proportion of rejected null
hypotheses among all the simulation samples.

The performances of the proposed test with different k’s and locations of the knots are evaluated
in each simulation scenario. We select k to be 3, 5, 7, 10, and 15. Two partitioning approaches
(PA) to divide the testing period are considered. The partition approaches are (i) PA1: partitioning
the testing period evenly, and (ii) PA2: partitioning the testing period based on the quantile of event
times of the true distributions. In practice, PA1 is the simplest way to determine the locations of
knots without any preliminary information of the true hazard functions to be tested. However, if we
have prior knowledge of the true hazard functions from a pilot study, PA2 may be a better approach
since it can prevent the collapse of intervals due to the lack of events. We perform the test using T ∗

2

instead of T ∗
1 since the F correction works well in preventing the Type-I error inflation issue.

The empirical Type-I error rates of the proposed test using the simulated data sets with no cen-
soring are reported in Table 2. The empirical Type-I error rates are reasonably controlled when the
selected value of k is small. We observe a slight inflation in the Type-I error when the number of
knots are larger under PA1. The Type-I error inflation issue is much milder if we partition the testing
period using PA2. Thus, PA2 is preferred if we have prior information on the distribution of the data
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Table 1: Parameter settings of the Type-I error simulation in Simulation Study 1.

Hazard form Distribution α γ testing period H0(t)

Constant hazard Exponential 1 3 [0, 6.91] t

Increasing hazard Weibull 1.5 3 [0, 5.23] t1.5

Decreasing hazard Weibull 0.75 3 [0, 9.12] t0.75

being tested. Figure 2 displays the comparison between the empirical distribution of the test statistic
T ∗
2 , and its theoretical distribution under the null hypothesis, which confirms that the F distribution

is a good approximation for T ∗
2 . Tables 3 and 4 present the Type-I error rates of the proposed test

under 20% and 40% censoring rates, respectively. Inflation of the empirical Type-I error rates is ob-
served as the censoring rate increases, but the tests using a smaller k and PA2 have better resistance
to the random censoring.
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Figure 2: Comparison between the empirical and theoretical distributions of T ∗
2 under the null hy-

pothesis. Blue solid lines denote the empirical distributions and red dashed lines denote the theoret-
ical F distributions.

3.1.2 Power simulation

The objective of this simulation study is to evaluate the empirical performance on statistical power of
our proposed one-sample test under different settings. We generate random samples from Weibull
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Table 2: Empirical Type-I error rates with no censoring in Simulation Study 1.

PA1 PA2

n\k 3 5 7 10 15 3 5 7 10 15

Exponential

100 0.0501 0.0650 0.0683 0.0573 0.0305 0.0431 0.0443 0.0477 0.0618 0.0576

200 0.0480 0.0578 0.0698 0.0884 0.0873 0.0453 0.0465 0.0462 0.0537 0.0622

300 0.0491 0.0518 0.0629 0.0752 0.1036 0.0451 0.0470 0.0500 0.0521 0.0571

500 0.0499 0.0534 0.0575 0.0655 0.0799 0.0476 0.0496 0.0484 0.0506 0.0546

1000 0.0501 0.0519 0.0540 0.0559 0.0640 0.0496 0.0503 0.0499 0.0496 0.0518

Weibull α = 1.5

100 0.0446 0.0498 0.0587 0.0607 0.0391 0.0431 0.0443 0.0477 0.0618 0.0576

200 0.0462 0.0483 0.0524 0.0639 0.0802 0.0453 0.0465 0.0462 0.0537 0.0622

300 0.0458 0.0471 0.0524 0.0600 0.0724 0.0451 0.0470 0.0500 0.0521 0.0571

500 0.0478 0.0506 0.0522 0.0545 0.0603 0.0476 0.0496 0.0484 0.0506 0.0546

1000 0.0484 0.0486 0.0497 0.0514 0.0529 0.0496 0.0503 0.0499 0.0496 0.0518

Weibull α = 0.75

100 0.0593 0.0783 0.0718 0.0583 0.0315 0.0431 0.0443 0.0477 0.0618 0.0576

200 0.0524 0.0697 0.0876 0.1044 0.0945 0.0453 0.0465 0.0462 0.0537 0.0622

300 0.0521 0.0626 0.0746 0.0993 0.1203 0.0451 0.0470 0.0500 0.0521 0.0571

500 0.0522 0.0571 0.0643 0.0792 0.1086 0.0476 0.0496 0.0484 0.0506 0.0546

1000 0.0498 0.0521 0.0571 0.0626 0.0759 0.0496 0.0503 0.0499 0.0496 0.0518

PA1: partitioning the testing period evenly;

PA2: partitioning the testing period based on the quantile of events of the true distributions.
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Table 3: Empirical Type-I error rates with 20% censoring rate in Simulation Study 1.

PA1 PA2

n\k 3 5 7 10 15 3 5 7 10 15

Exponential

100 0.0558 0.0650 0.0586 0.0436 0.0230 0.0396 0.0456 0.0524 0.0666 0.0262

200 0.0533 0.0698 0.0844 0.0864 0.0770 0.0440 0.0463 0.0496 0.0576 0.0778

300 0.0519 0.0627 0.0769 0.0961 0.1004 0.0464 0.0494 0.0490 0.0556 0.0658

500 0.0494 0.0580 0.0665 0.0828 0.1134 0.0464 0.0488 0.0494 0.0515 0.0579

1000 0.0495 0.0545 0.0577 0.0664 0.0825 0.0490 0.0496 0.0515 0.0512 0.0524

Weibull α = 1.5

100 0.0436 0.0581 0.0570 0.0501 0.0277 0.0394 0.0456 0.0522 0.0666 0.0262

200 0.0478 0.0533 0.0632 0.0758 0.0795 0.0443 0.0461 0.0496 0.0577 0.0778

300 0.0468 0.0531 0.0585 0.0708 0.0905 0.0466 0.0493 0.0493 0.0556 0.0659

500 0.0484 0.0515 0.0543 0.0610 0.0759 0.0466 0.0491 0.0494 0.0516 0.0581

1000 0.0493 0.0503 0.0527 0.0540 0.0609 0.0487 0.0492 0.0515 0.0514 0.0524

Weibull α = 0.75

100 0.0662 0.0667 0.0571 0.0446 0.0236 0.0394 0.0454 0.0521 0.0671 0.0264

200 0.0607 0.0861 0.0912 0.0879 0.0751 0.0447 0.0457 0.0502 0.0572 0.0775

300 0.0556 0.0733 0.0981 0.1118 0.1066 0.0466 0.0492 0.0497 0.0552 0.0661

500 0.0532 0.0670 0.0804 0.1067 0.1322 0.0467 0.0491 0.0495 0.0518 0.0576

1000 0.0515 0.0584 0.0637 0.0780 0.1036 0.0487 0.0492 0.0513 0.0512 0.0525

PA1: partitioning the testing period evenly;

PA2: partitioning the testing period based on the quantile of events of the true distributions.
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Table 4: Empirical Type-I error rates with 40% censoring rate in Simulation Study 1.

PA1 PA2

n\k 3 5 7 10 15 3 5 7 10 15

Exponential

100 0.0725 0.0499 0.0414 0.0311 0.0160 0.0502 0.0609 0.0635 0.0482 0.0101

200 0.0710 0.0759 0.0697 0.0629 0.0537 0.0461 0.0551 0.0643 0.0769 0.0844

300 0.0605 0.0851 0.0853 0.0841 0.0776 0.0458 0.0521 0.0587 0.0703 0.0911

500 0.0577 0.0744 0.0940 0.1007 0.1059 0.0483 0.0521 0.0542 0.0612 0.0775

1000 0.0528 0.0617 0.0732 0.0959 0.1209 0.0485 0.0498 0.0527 0.0553 0.0613

Weibull α = 1.5

100 0.0651 0.0527 0.0454 0.0356 0.0164 0.0504 0.0614 0.0635 0.0477 0.0100

200 0.0553 0.0732 0.0694 0.0659 0.0595 0.0469 0.0552 0.0645 0.0773 0.0839

300 0.0506 0.0671 0.0797 0.0796 0.0772 0.0454 0.0525 0.0587 0.0711 0.0921

500 0.0514 0.0608 0.0695 0.0872 0.0939 0.0485 0.0524 0.0542 0.0616 0.0770

1000 0.0515 0.0546 0.0596 0.0697 0.0904 0.0484 0.0494 0.0531 0.0552 0.0613

Weibull α = 0.75

100 0.0524 0.0497 0.0389 0.0311 0.0171 0.0511 0.0616 0.0635 0.0471 0.0099

200 0.0804 0.0758 0.0685 0.0611 0.0516 0.0468 0.0553 0.0645 0.0778 0.0846

300 0.0746 0.0849 0.0840 0.0849 0.0742 0.0456 0.0526 0.0586 0.0715 0.0919

500 0.0652 0.0925 0.0994 0.1085 0.1061 0.0491 0.0523 0.0546 0.0622 0.0778

1000 0.0572 0.0724 0.0913 0.1208 0.1362 0.0481 0.0493 0.0525 0.0559 0.0620

PA1: partitioning the testing period evenly;

PA2: partitioning the testing period based on the quantile of events of the true distribution.



90 Zhang et al.

distributions with scale parameter γ = 3 and different shape parameters α ∈ [0.5, 2]. Then we
conduct the proposed test at the Type-I error rate of 0.05 under the three null hypotheses: H10 :

H(t) = λt, H20 : H(t) = λt1.5, and H30 : H(t) = λt0.75. The empirical power estimate of each
simulation scenario is calculated by the proportion of rejected null hypotheses among the 10,000
simulation samples. The sample size (n) is 300, and the testing periods are set as 0 to the 90%
quantile of the true distributions. No censoring is considered in this simulation. Similar to the
settings considered in Section 3.1.1, five choices of k and two approaches to determine the locations
of knots are considered in this simulation.

Figure 3 shows the power curves of the proposed test for different numbers of knots and dif-
ferent approaches to partition time. A higher power is achieved when the true shape parameter is
deviate from the shape parameter specified in the null hypothesis. The tests using PA1 and PA2 have
comparable power when the Type-I error rates are controlled at 0.05. When partitioning the testing
period using PA2, a higher power is observed with a smaller k.
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Figure 3: Empirical power curves for (A1) testing H10 with PA1; (A2) testing H10 with PA2; (B1)
testing H20 with PA1; (B2) testing H20 with PA2; (C1) testing H30 with PA1; (C2) testing H30 with
PA2.

3.2 Simulation study 2: testing the proportional hazard assumption

Similar to the one-sample test, we prespecify the following parameters: the testing period [0, tu],
the number of knots k, and the location of each knot in the testing period to test the proportional
hazard assumption. When we are interested in testing if the proportional hazards assumption holds
for the entire time in practice, tu may be chosen as the 95% empirical quantile of the events in both
two groups. In this simulation study, we investigate the performance of the proposed procedure for
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testing the proportional hazards with various numbers of knots and different approaches to partition
the testing period.

3.2.1 Type-I error simulation

In this study, we generate two groups of data from the following three scenarios: exponential dis-
tributions with γ1 = 3 and γ2 = 4; Weibull distributions with α = 1.5, γ1 = 4 and γ2 = 5;
Weibull distributions with α = 0.75, γ1 = 1.5 and γ2 = 2.5. In each scenario, the two distribu-
tions meet the proportional hazards assumption. The sample sizes per group in the simulation are
n = 100, 200, 300, 500, and 1, 000. Fifty thousand simulation runs were generated. Three censoring
scenarios are considered in each simulation scenario, which are: no censoring, 20% random censor-
ing, and 40% random censoring. The values of k for the test are 3, 5, 7, 10, and 15. Two approaches
to partition the testing period are considered in this simulation study, namely, PA1: partitioning the
testing period evenly, and PA2: partitioning the testing period based on the empirical quantile of
events in both groups. Similar to Simulation Study 1, we select T ∗

4 instead of T ∗
3 to prevent the

Type-I error inflation issue using the F correction.
Tables 5 - 7 present the Type-I error rates of the proposed test under the scenarios of no censoring,

20% random censoring, and 40% random censoring, respectively. Like Simulation Study 1, Type-I
error inflation is observed in the tests with large k and PA1 (determining the location of knots). The
issue gets more severe as the censoring rate increases. However, partitioning time using PA2 controls
the Type-I error rate well in all cases of k. It still performs well with an increasing proportion of
censored data and has better resistance to a high censoring rate compared with PA1. Thus, PA2 is
recommended to partition the time axis in practice.

3.2.2 Power simulation

We study the characteristic of the power of the proposed PH test with different prespecified settings
in this simulation study. For each random sample, one group is generated from an exponential
distribution with the scale parameter λ1 = 3, while the other group is generated from a Weibull
distribution with the same scale parameter λ2 = 3 and a different shape parameter α2 ∈ [0.5, 2].
The proportional hazards assumption is violated when α2 is deviate from 1. The proposed PH
testing procedure is then performed in each random sample at the Type-I error rate of 0.05. The
empirical power is estimated as the proportion of rejections of the null hypothesis among all the
random samples. The sample size (n) is 200. Ten thousand random samples are generated for each
simulation scenario. In addition, no censoring is considered in this power simulation. Similar to the
Type-I error simulation, five different numbers of k and two approaches to determine the location of
knots are considered.

Figure 4 displays the empirical power curves of the proposed PH test with different k’s and
different approaches to partition the testing period. The proposed test reaches a higher power as the
shape parameter of group 2 gets far away from 1. When the Type-I error is well controlled at 0.05 in
both PA1 and PA2 (k = 3), the testing power using PA2 is higher than that using PA1 to partition the
time axis. Among the tests with PA2, a higher power is observed when a smaller number of knots
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Table 5: Empirical Type-I error rates with no censoring in Simulation Study 2.

PA1 PA2

n\k 3 5 7 10 15 3 5 7 10 15

Exponential

100 0.0601 0.0736 0.0768 0.0687 0.0480 0.0443 0.0431 0.0429 0.0424 0.0465

200 0.0615 0.0708 0.0793 0.0902 0.0929 0.0506 0.0474 0.0482 0.0466 0.0463

300 0.0567 0.0652 0.0718 0.0842 0.0984 0.0494 0.0489 0.0490 0.0475 0.0472

500 0.0534 0.0582 0.0619 0.0724 0.0867 0.0500 0.0494 0.0495 0.0473 0.0477

1000 0.0531 0.0539 0.0564 0.0592 0.0694 0.0505 0.0502 0.0486 0.0511 0.0506

Weibull α = 1.5

100 0.0464 0.0534 0.0554 0.0575 0.0398 0.0418 0.0408 0.0411 0.0408 0.0427

200 0.0528 0.0570 0.0622 0.0666 0.0742 0.0495 0.0492 0.0478 0.0458 0.0460

300 0.0527 0.0560 0.0571 0.0625 0.0716 0.0493 0.0499 0.0490 0.0489 0.0461

500 0.0528 0.0525 0.0552 0.0570 0.0627 0.0506 0.0509 0.0487 0.0481 0.0465

1000 0.0512 0.0510 0.0518 0.0550 0.0554 0.0510 0.0509 0.0498 0.0508 0.0503

Weibull α = 0.75

100 0.0620 0.0757 0.0808 0.0736 0.0552 0.0400 0.0383 0.0395 0.0400 0.0410

200 0.0689 0.0847 0.1009 0.1099 0.1097 0.0482 0.0477 0.0457 0.0446 0.0456

300 0.0623 0.0764 0.0890 0.1038 0.1232 0.0490 0.0496 0.0479 0.0483 0.0437

500 0.0577 0.0663 0.0768 0.0910 0.1122 0.0499 0.0507 0.0496 0.0499 0.0472

1000 0.0537 0.0574 0.0626 0.0713 0.0868 0.0516 0.0495 0.0501 0.0508 0.0495

PA1: partitioning the testing period evenly;

PA2: partitioning the testing period based on the empirical quantile of the events.
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Table 6: Empirical Type-I error rates with 20% censoring rate in Simulation Study 2.

PA1 PA2

n\k 3 5 7 10 15 3 5 7 10 15

Exponential

100 0.0688 0.0817 0.0841 0.0776 0.0541 0.0481 0.0496 0.0520 0.0592 0.0572

200 0.0653 0.0762 0.0880 0.1016 0.0992 0.0518 0.0515 0.0511 0.0545 0.0626

300 0.0586 0.0689 0.0800 0.0954 0.1114 0.0511 0.0506 0.0517 0.0533 0.0572

500 0.0560 0.0609 0.0681 0.0836 0.1019 0.0491 0.0519 0.0500 0.0520 0.0539

1000 0.0526 0.0571 0.0585 0.0653 0.0769 0.0517 0.0517 0.0524 0.0520 0.0533

Weibull α = 1.5

100 0.0532 0.0632 0.0702 0.0666 0.0481 0.0466 0.0501 0.0512 0.0597 0.0543

200 0.0563 0.0630 0.0700 0.0784 0.0876 0.0521 0.0509 0.0500 0.0543 0.0611

300 0.0544 0.0605 0.0652 0.0727 0.0851 0.0518 0.0509 0.0525 0.0522 0.0556

500 0.0531 0.0547 0.0579 0.0649 0.0775 0.0497 0.0520 0.0521 0.0510 0.0558

1000 0.0518 0.0545 0.0531 0.0588 0.0631 0.0510 0.0501 0.0525 0.0511 0.0525

Weibull α = 0.75

100 0.0692 0.0858 0.0875 0.0821 0.0628 0.0446 0.0474 0.0505 0.0577 0.0511

200 0.0731 0.0932 0.1064 0.1180 0.1182 0.0516 0.0511 0.0512 0.0539 0.0616

300 0.0676 0.0845 0.1010 0.1183 0.1340 0.0505 0.0522 0.0508 0.0524 0.0547

500 0.0597 0.0728 0.0852 0.1031 0.1304 0.0506 0.0521 0.0522 0.0524 0.0531

1000 0.0559 0.0609 0.0662 0.0795 0.0981 0.0513 0.0502 0.0508 0.0508 0.0526

PA1: partitioning the testing period evenly;

PA2: partitioning the testing period based on the empirical quantile of the events.
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Table 7: Empirical Type-I error rates with 40% censoring rate in Simulation Study 2.

PA1 PA2

n\k 3 5 7 10 15 3 5 7 10 15

Exponential

100 0.0799 0.0946 0.0933 0.0890 0.0703 0.0546 0.0603 0.0721 0.0932 0.0611

200 0.0700 0.0881 0.0999 0.1101 0.1076 0.0544 0.0556 0.0614 0.0713 0.0940

300 0.0621 0.0762 0.0915 0.1084 0.1209 0.0532 0.0545 0.0563 0.0622 0.0745

500 0.0584 0.0665 0.0788 0.0952 0.1190 0.0506 0.0507 0.0562 0.0570 0.0629

1000 0.0529 0.0573 0.0624 0.0729 0.0922 0.0511 0.0502 0.0524 0.0520 0.0551

Weibull α = 1.5

100 0.0640 0.0782 0.0843 0.0839 0.0598 0.0522 0.0588 0.0712 0.0896 0.0577

200 0.0599 0.0730 0.0806 0.0962 0.1029 0.0542 0.0550 0.0600 0.0716 0.0949

300 0.0560 0.0631 0.0722 0.0861 0.1036 0.0527 0.0534 0.0561 0.0612 0.0735

500 0.0528 0.0586 0.0630 0.0738 0.0905 0.0521 0.0516 0.0545 0.0568 0.0623

1000 0.0507 0.0532 0.0569 0.0593 0.0705 0.0506 0.0511 0.0518 0.0534 0.0558

Weibull α = 0.75

100 0.0804 0.0972 0.0991 0.0921 0.0783 0.0519 0.0567 0.0690 0.0866 0.0549

200 0.0826 0.1033 0.1175 0.1240 0.1254 0.0537 0.0560 0.0602 0.0694 0.0909

300 0.0725 0.0946 0.1116 0.1299 0.1415 0.0538 0.0538 0.0562 0.0626 0.0743

500 0.0643 0.0819 0.0960 0.1198 0.1480 0.0505 0.0506 0.0533 0.0571 0.0604

1000 0.0544 0.0620 0.0738 0.0860 0.1137 0.0516 0.0497 0.0528 0.0527 0.0561

PA1: partitioning the testing period evenly;

PA2: partitioning the testing period based on the empirical quantile of the events.
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are chosen.
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Figure 4: Empirical power curves for (A1) (B1) PH Tests with PA1; (A2) (B2) PH Tests with PA2.

4 Application to the Gender Difference in Morality Hazard of
Young Adults with AML

Acute myeloid leukemia (AML) is a heterogeneous disease with a varied incidence and mortality
rates across different age groups (Xie et al., 2003). Age at diagnosis is one of the most critical fac-
tors that impacts disease progression of AML. AML is less common (Deschler and Lübbert, 2006)
and has a lower risk of death in children and young adults (Appelbaum et al., 2006) as compared
to older adults. Research in the field has studied the impact of age at diagnosis on the risk of death
due to AML, but young adults receive less attention than both younger pediatric and older patient
populations (Schmidt, 2006; Wennström et al., 2016). Besides, gender is another host factor that can
influence the risk of mortality. Males have a significantly higher mortality risk than females, and sev-
eral gene mutations related to the high-risk of AML have been reported to be associated with males
(Quesada et al., 2019; Yazarloo et al., 2013). Hossain and Xie (2015) investigated the sex variation
of AML survival in childhood and young adults and identified that males substantially have a higher
risk of death than females in the age group of 20-24 years old at diagnosis. In this application, we
apply our proposed methodology to study the sex-specific hazard functions of mortality in young
adults (20-24 years old) with AML.

We extract 496 young adult patients with an AML diagnosis between the ages of 20 and 24
from the Surveillance, Epidemiology, and End Results (SEER) program registry system from years
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1990 to 2017. The majority of patients are female (50.2%) and Caucasian (75.0%). Two hundred
and twenty seven events (deaths) were observed under a maximum 10-year follow-up time. The
censoring rate is 54.2%. Figure 5 displays the Kaplan-Meier curves and empirical cumulative hazard
curves, respectively, for male and female patients. A change-point of the cumulative hazard function
at 30 months is observed for both the gender groups. The log-rank test shows a significant difference
in survival rates over time between the two gender groups (p = 0.006).
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Figure 5: Kaplan Meier curves (left) and empirical cumulative hazard curves (right) of the death due
to AML in different young adult gender groups.

In order to describe the difference by a hazard ratio, we first verify the PH assumption between
the two gender groups using the proposed two-sample testing procedure. By choosing k = 10

and partitioning the time axis based on the empirical quantile of the events in both groups, the
proposed method gives a p-value of 0.822. Therefore, we do not reject the null hypothesis of the
PH assumption. That is, a hazard ratio is valid to describe the difference in mortality risk between
the gender groups. Applying Cox’s regression, males are estimated to have 1.45 (95% CI = [1.11,
1.87]) times the risk of mortality than females in young adults after the diagnosis of AML. The PH
test for a Cox regression model fit (Grambsch and Therneau, 1994) demonstrates the proportional
hazards (p = 0.67) which is consistent to the result of the proposed PH test.

Since a change point of the cumulative hazard function was observed at 30 months in both gender
groups, we conduct the proposed one-sample test to test a constant hazard of death in two testing
period: 0-30 months and 30-90 months. We prespecify k = 5 and H0(t) = t, and partition the time
axis evenly on each testing period. The null hypothesis of the constant hazard is not rejected in the
male group at 30-90 months (p = 0.230), the female group at 0-30 months (p = 0.193), and the
female group at 30-90 months (p = 0.649), but the null hypothesis is rejected in male group at 0-30
months (p < 0.001). Thus, the group of young adult females with AML might have a piecewise
constant hazard function after diagnosis, where a higher constant risk within the first 30 months and
a lower constant risk between 30 and 90 months. Specifying different null hypotheses of a Weibull
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hazard with a shape parameter α (H0(t) = tα) to males at 0-30 months, we cannot reject the null
hypothesis when α = 0.7 (p = 0.167) and α = 0.6 (p = 0.186). It indicates a potential decreasing
hazard of mortality in young adult males within the first 30 months after the diagnosis of AML. If
we test a constant hazard in 5-25 months for young adult males, the null hypothesis is not rejected
(p = 0.501) using the proposed test.

5 Discussion

In this paper, we develop the non-parametric procedures for the hypothesis testing problems for cu-
mulative hazard functions in censored time-to-event data. These procedures can be used (i) to test if
the cumulative hazard function in one sample follows a partially known-form hazard on a selected
period; and (ii) to test the proportional hazards assumption between two independent samples. The
proposed approach is very flexible in practice as it does not restrict the testing period to the entire
domain of time. Thus, the testing period can be prespecified based on the scientific question of inter-
est. Extensive simulation studies are carried out to examine the performance of different approaches
to choose the number of knots and the partition of time. The simulation results indicate that the
proposed methods enjoy a reasonable Type-I error control and a good power in both one-sample and
two-sample testing problems. The proposed methodology is applied to the SEER database of young
adults (20-24 years old at diagnosis) with AML to investigate the gender difference in mortality risk
and the sex-specific mortality hazard functions after AML diagnosis.

In practice, choosing an appropriate number of knots and partitioning the time axis properly are
essential when applying the proposed methods. Based on our empirical studies, both better Type-I
error control and higher empirical power of the tests are achieved by selecting a smaller number
of knots. Slightly Type-I error inflation is observed when choosing a large number of knots in a
scenario with small to moderate sample size. However, too sparse knots are difficult to capture
the pattern of the true cumulative hazard function. Thus, a moderate number of knots (e.g. 5-10) is
recommended in practice. For the partition of the testing period, avoiding the collapse of interval due
to the lack of events prevents the Type-I error inflation issue and achieves higher power. Therefore,
we suggest to partition the testing period based on the prior knowledge when testing a known-form
hazard and empirical quantile when testing the PH assumption.

The proposed methods are potentially useful in oncology studies. Although it is seldom to ob-
serve a constant failure rate of the primary efficacy endpoint on the entire time in cancer clinical
trials, the constant hazard might still be true in a certain period of time. Our method may aid physi-
cians to understand the characteristics of disease progression by testing if the cumulative hazard
function follows a known-form hazard in a certain period. Testing the proportionality between two
hazards is also important in oncology studies. For instance, the widely used log-rank test (Peto and
Peto, 1972) for testing the difference between the treatment and control groups is powerful when
the PH holds between the two independent groups. Compared with other PH tests, our proposed
procedure is able to test the PH assumption under a certain period. Our proposed method may help
clinicians to report the effect size of treatment versus placebo using a hazard ratio in a certain period
even if the PH assumption is not true for the entire time.
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